

Alice in Onion Land:

On Information Security of Tor

Ville-Valtteri Immonen

Master’s thesis

School of Computing

Computer Science

June 2016

ii

ITÄ-SUOMEN YLIOPISTO, Luonnontieteiden ja metsätieteiden tiedekunta,

Joensuu

Tietojenkäsittelytieteen laitos

Tietojenkäsittelytiede

Opiskelija, Ville-Valtteri Immonen: Sipulireititys ja tietoturva

Pro gradu -tutkielma, 41 s.

Pro gradu –tutkielman ohjaajat: FT Markku Tukiainen

Kesäkuu 2016

Kryptoverkkojen tarkoitus on luoda verkkoon kommunikaatiopolkuja jotka

mahdollistavat viestien lähettämisen tavalla jolla viestien alkuperää ei pystytä

yhdistämään niiden lähettäjään. Tor –sovellus käyttää sipulireititys –nimistä

tekniikkaa viestien salaamiseen. Kyseinen tekniikka saa nimensä tietorakenteesta,

jonka sisällä informaatio kulkee lähettäjältä vastaanottajalle. Yhteyden alulle paneva

kone muodostaa sipulireitityspolun ja paketoi lähetettävän viestin sipulin sisään

ennen sen lähettämistä eteenpäin polkua pitkin. Sipuli muodostetaan kryptografisesti

salatusta kerroksista, jotka jokainen kommunikaatiopolun varrella oleva reititin

kuorii yksitellen.

Tor pyrkii pysymään matalan latenssin palveluna ja tekniikka on suunniteltu tämä

periaate mielessäpitäen. Erilaiset puolustuskeinot, kuten aloitusvartijat ja sillat

tarjoavat tietoturvaa samalla kuitenkin pitäen verkon laskentatehon matalana.

Ensimmäinen versio sipulireitityksestä kehitettiin vuonna 1996 ja viimeisin vieläkin

kehitteillä oleva, kolmas sukupolvi, julkaistiin vuonna 2006.

Tässä tutkielmassa tarkastelemme sipulireititystä: miten eri sukupolvet eroavat

toisistaan, millaisia tietoturvauhkia sipulireititykseen liittyy ja miten niitä vastaan

voidaan puolustautua. Tarkastelemme kahdeksaa viime vuosina julkaistua artikkelia

tietoturvahyökkäyksistä, eli teoreettisista tavoista, joilla sipulireititysteknologian

tietoturva voidaan murtaa. Tämän jälkeen jaamme nämä hyökkäykset kategorioihin.

Ehdottamamme kategoriat tietoturvahyökkäyksille ovat: Lähtö- ja loppusolmujen

valintaa hyödyntävät hyökkäykset , Liikenteen ja ajoituksen analyysiin perustuvat

hyökkäykset, Autonomisten järjestelmien tason ja globaalin tason hyökkäykset ja

Sovellustason hyökkäykset.

Avainsanat: Sipulireititys, Tor, Anonymiteetti, Tietoturva, Tietosuoja

ACM-luokat (ACM Computing Classification System, 1998 version): C.2.1

iii

UNIVERSITY OF EASTERN FINLAND, Faculty of Science and Forestry, Joensuu
School of Computing

Computer Science

Ville-Valtteri Immonen: Alice in Onion Land: On Information Security of Tor

Master’s Thesis, 41 p.

Supervisors of the Master’s Thesis: PhD Markku Tukiainen

June 2016

Abstract: Cryptographic networks aim to create communication paths through inter-

net that allow sending messages in a way that the origins of the message cannot be

linked to its sender. Tor -application uses a technique called onion routing to encrypt

messages. The technique gets its name from the data structure inside which infor-

mation travels from sender to receiver. The machine that initiates the connection

forms an onion routing path and wraps the message inside an onion before sending it

down the path. An onion is formed from cryptographically encrypted layers that are

peeled one by one by each router along the communication path.

Tor aims to stay a low latency anonymity service and the technology has been de-

signed with this principle in mind. Different defences like entry guards and bridges

offer protection while keeping the computing cost of the network low. First version

of onion routing was developed in 1996 and the last, third generation that is still un-

der development was published in 2006.

In this thesis we examine onion routing: how do different generations differ from

each other and what kinds of data security threats onion routing has and what possi-

bilities is there to defend against them. We discuss eight papers published in the re-

cent years about theoretical attacks, meaning theoretical ways to break the security

provided by onion routing technology and divide these attacks into categories. The

categories we propose are: Entry and exit onion router selection attacks, Traffic and

time analysis based attacks, Autonomous system level and global level attacks, and

Software-level attacks.

Keywords: Onion Routing, Tor, Anonymity, Information Security, Information Pri-

vacy

CR Categories (ACM Computing Classification System, 1998 version): C.2.1

iv

Abbreviations

AS Autonomous system. A part of a network that is controlled by a single

administrative entity.

CircID Circuit identifier of a cell that tells to the node which circuit the cell

belongs to.

CMD Control cell command. Reports the type of a cell so that the receiving

node can interpret it correctly.

DHT Distributed hash table. Used by applications like BitTorrent to store

information about nodes in the P2P network.

DoS Denial-of-service attack. An attack that tries to stop a server from re-

sponding to clients by flooding it with messages.

EFF Electronic Frontier Foundation. Organization that funds the develop-

ment of onion routing today.

HTML Hypertext Markup Language. The markup language used to present

webpages.

HTTP Hypertext Transfer Protocol. Application level protocol used to transfer

webpages.

HTTPS A protocol that uses HTTP over SSL to create a trusted connection be-

tween a server and a client.

img HTTP image tag. Tells a browser to retrieve and insert an image into a

webdocument.

IP Internet Protocol. A protocol designed to connect computers in the in-

ternet with unique addresses.

NRL United States Naval Research Laboratory. Developed the first genera-

tions of onion routing.

NSA National Security Agency. Intelligence organization in US that has

tried to crack the Tor encryption.

ONR Office of Naval Research. Funded the development of onion routing

from 1995 to 2004.

P2P Peer-to-peer. A distributed application consisting of multiple peers over

a network.

PEX Peer exchange. A protocol used by BitTorrent to control file saving

between peers.

TCP Transmission Control Protocol. Transport layer protocol to deliver

streams over an IP network.

Tor Software designed to allow the forming an anonymous connection in-

side the internet.

UDP User Datagram Protocol. Transport layer protocol to deliver streams

over an IP network.

v

Table of contents

1 Introduction ... 1

2 Onion routing .. 3

2.1 Overview of the technology .. 3
2.2 The evolution of onion routing ... 4

2.2.1 First generation (1996 - 2004) .. 5
2.2.2 Second generation (2004 - 2006) .. 6

2.2.3 Third generation (2006 -) ... 7

3 Tor ... 9

3.1 Tor Browser Bundle .. 9

3.2 Tor network ... 10
3.3 Creation of an onion circuit .. 11
3.4 A message's journey through an onion circuit 15
3.5 Cells .. 16

4 Attack threats .. 18

4.1 Attack categories ... 19

5 New attacks against Tor .. 22

5.1 The Bad Apple Attack .. 22
5.1.1 Outline of the attack .. 22

5.2 Application-level attack .. 23
5.2.1 Outline of the attack .. 24

5.2.2 Results and defenses ... 25

5.3 Probabilistic Analysis in a Black-box Model 25

5.4 CellFlood .. 26
5.4.1 Outline of the attack .. 26
5.4.2 Results and defenses ... 27

5.5 EgotisticalGiraffe .. 27
5.5.1 Outline of the attack .. 28

5.5.2 Results and defenses ... 28
5.6 Sniper Attack .. 29

5.6.1 Outline of the attack .. 29

5.6.2 Results and defenses ... 31
5.7 New traffic confirmation attacks .. 31

5.7.1 Flow records ... 32
5.7.2 “Relay early” Traffic confirmation attack 32
5.7.3 Circuit fingerprinting attacks .. 33

5.8 A Stealthy Attack Against Tor Guard Selection 33
5.8.1 Outline of the attack and results 34

6 Refined attack categories .. 35

6.1 Final categories ... 36
6.2 Threat model ... 38

vi

7 Conclusion .. 40

7.1 Thoughts about the security of Tor ... 40

References ... 41

 1

1 Introduction

Since the invention of sending written down messages between people there has also

been a need to prevent other people from capturing and reading those messages.

When alongside physical messages came electric communication and the internet,

the problem certainly did not go away. Huge amounts of effort is being made to de-

velop efficient ways to scramble, or encrypt, messages so that only the communi-

cating parties know what the contents of the messages are. Normally the messages

traveling through the internet are encrypted, and only their sender and receiver are

known to everyone, but in some situations even this information is wished to be kept

as a secret.

The term traffic analysis is used to describe a process that tries to study messages

going through an information network with the attemption to make conclusions about

the traffic based on the collected knowledge [36]. Every action made in the internet

sends a series of messages through multitude of servers that can be located anywhere

in the world, making the actions quite public. This means that is relatively easy for

someone to monitor the ongoing traffic. Eavesdropping on the traffic is not hard. As

the data goes through the public internet, it travels through several locations and

someone trying to eavesdrop on this communication only needs to be in one spot

along this communication path to observe this traffic.

An IP packet that transfers data through the internet has two parts: firstly, the data

being transmitted, which is called payload, and secondly, a header that contains

metadata about the payload. The payload is usually encrypted before it is sent for-

ward, but the header part is not, and it tells a lot about the data, such as the sender,

the receiver, the time and the size of the data block. This creates an information secu-

rity problem for individuals and organizations, because in general anyone intercept-

ing these messages could observe the traffic and form models about the traffic based

only on the headers of the network packets.

Because of the reason explained above, an increasing part of internet users do not

want for outsiders to be able to look what they are doing in the internet and this has

created a demand for applications that could offer anonymity. Users and their reasons

2

for this vary: ordinary people want to protect their privacy from marketers and irre-

sponsible companies, journalists and their audience want to guarantee freedom of

speech without political censorship, law enforcement officers want to study internet

crimes discreetly and army field agents want to protect themselves against enemy

espionage during operations [39].

Various cryptographic networks try to prevent traffic analysis by mixing the messag-

es traveling through a network in such a way that an external observer cannot trace

the origin and destination of a message. The aim is to allow a completely private way

of communicating over the internet. One of these anonymity-offering crypto net-

works is Tor [8] which uses a technology called onion routing to encrypt messages.

The technology, which was originally designed for the purposes of the United States’

army, is in the present day being developed by enthusiastic programmers and scien-

tists. Nowadays onion routing is actively used to avoid internet censorship, to pre-

vent eavesdropping and to assist freedom of speech.

This thesis takes a closer look at onion routing: what kind of measures does it take to

protect messages against traffic analysis and also what kind of countermeasures can

be taken to break this protection. We take a look at some recent research papers de-

scribing different types of attacks against the system and finally propose some cate-

gories which can be used to classify different types of attack methods. With these

categories we are able to create an attack model that an adversary could follow.

The thesis is organized as follows: second chapter looks at how in general onion

routing works. Third chapter goes through the history of the technology to explain

how the design of the technology has taken shape over time. Chapter four lists differ-

ent kind of attacks against onion routing and provides a classification of these at-

tacks. Final chapter five presents a conclusion with some final thoughts.

3

2 Onion routing

The history of onion routing begins from the year 1995, when the Office of Naval

Research, or ONR, in the United States started to finance a project that was aimed to

remove identification from routing. In other words their aim was to create a way of

creating connections in the internet anonymously [28]. At the beginning three per-

sons, David Goldschlad, Michael Reed and Paul Syverson began the development of

technology that was later going to be called onion routing. The initial result of the

project was the first prototype in the year 1996 and after this the technology has been

developed for another two generations.

Before Goldschlad, Reed and Syverson started developing the first prototypes, they

had a picture about what kind of principles the technology would follow. Firstly, the

code should be open to everyone. For the users to be able to trust in the system, they

would have to see the code they are running. The second main principle of onion

routing is to allow free riding. This means that the computer that is used to access the

system does not necessarily have to be made a server. This principle has some securi-

ty advantages, which will be analysed later.

2.1 Overview of the technology

Onion routing gets its name from the data structure inside which the information

travels through the network [8]. An onion is built from cryptographically encrypted

layers by the sender of the message. Every router along the communication path

peels these layers one by one, as the message travels through the network. Incoming

messages travel along the same path, except this time the routers are adding layers to

the onion, which the receiving end then peels.

As noted earlier, onion routing is based on creating a cryptographic route, through

several routers, between two computers. This path is called an onion circuit or onion

chain [28]. The routers that form the path are selected randomly from all servers reg-

istered inside the onion network and the circuit is formed in a way that every node

knows only the next and previous router in the communication path. The initiator of

the path makes the decision about which routers will be included in the chain.

4

To prevent a situation where all routers participating in the communication path

would be able to open the messages traveling along the chain, the initiator must dis-

tribute unique, symmetric encryption keys individually to every involved router. The

reason for using symmetric keys is that symmetric encryption uses the same key for

encrypting and decrypting messages so messages can be sent to both directions with

the same key. Symmetric encryption is also computationally much cheaper than pub-

lic-key encryption.

The symmetric encryption keys are distributed by using public-key encryption. Pub-

lic-key encryption uses two keys: a private key (which is not known by others) and a

public key (can be known by everyone). The messages that are sent to the receiver

are encrypted with a public key, which in turn cannot be used to decrypt the messag-

es. The receiver can open the message with their private key. Because every router

has their own public key, the symmetric keys that are used for creating the onion can

be distributed safely by using public keys without the danger of other routers finding

them out.

The reason for using symmetric encryption for creating the actual onion is that sym-

metric encryption demands a lot less computing power than public-key encryption.

There are loads of messages traveling through the network in all directions and every

message has to be processed by an encryption algorithm. By using symmetric en-

cryption instead of public-key encryption, the computing cost of the network can be

reduced significantly.

The algorithm for forming an onion chain is described in detail in the third chapter.

Next we will take a closer look at the evolution of the onion routing technology. As

mentioned earlier, onion routing has been developed incrementally in generations.

The features mentioned so far are not true for all three generations, but were included

in the technology one by one. The differences between the evolving generations will

be the main subject of the second chapter.

2.2 The evolution of onion routing

When the designing of onion routing was set to motion in the U.S. Naval Research

Laboratory, or NRL, Goldschlad, Reed and Syverson had just a few basic principles,

5

and some guesses about in which kind of situations the technology would be used, to

guide them in their work [28]. It was not until the first generation was published

when they got their first illustration of how functional the design actually was. Fea-

tures were added and refined in the following generations according to the observa-

tions made by the developers and also according to feedback coming from the users.

The generations therefore represent the different development phases of onion rout-

ing and by examining the generations it is possible to see why the onion technology

is implemented the way it is today.

Syverson, who was one of the first people developing onion routing, gives a nice

picture about the ideas and philosophy of onion routing in his article A Peel of Onion

(2011) [28]. The article is a must read of everyone interested about onion routing and

it has been one of the main sources for this Master’s Thesis in addition to the article

Tor: The Second-Generation Onion Router (2004) [8] by Dingledine, Mathewson

and Syverson. This chapter has been mainly written based on these two papers, and

gives only a summary of the main points of the story.

2.2.1 First generation (1996 - 2004)

The basic idea of onion routing is to allow making an anonymous connection from

within the onion network to servers which are external of the onion network. In addi-

tion to this it was decided to make possible to form a connections between two rout-

ers connected to the onion network. In both of these situations the length of the

chain, meaning the number of routers in the chain, the sender and receiver included,

has a big relevance from the aspect of information security.

In order for one of the nodes in the chain to break the anonymity, it needs to connect

the anonymous messages to their sender and to their receiver. Basically a theoretical

attacker needs to get the IP address of the sender and the receiver. Normally this

could be done by looking at the headers of the data packages, but onion routing en-

crypts these headers. The most basic attack against onion routing is to set a router as

an onion node and try to observe the messages that go through that router.

If the chain is three nodes long (sender, onion router and receiver), in case the middle

node is the malicious attacker that wants to figure out the IP addresses of the two

6

ends of the chain, it will know these addresses immediately. When using four nodes

(sender, two routers, receiver), the adversary needs to break the encryption of only

one other node to break the anonymity of the chain. The developers did not see this

as safe enough, so they decided to set the minimum and default length of the chain as

five nodes.

So called rendezvous servers are used in the case that two machines that are both

connected to the onion network want to send each other messages. The machines

cannot form the connection path based on each other’s IP addresses so the rendez-

vous server is used as a middle man to distribute the messages. Because both of the

parties have to form their own onion chains between the rendezvous server, the

length of the path with all routers included will be nine nodes. This feature has

stayed the same for the next generations.

The largest difference between the first generation and the next two is that in the first

generation version the client software and an onion router were totally integrated. As

a computer joined the network to send messages, it also could be added as a part of

an onion chain. This kind of functionality was against one of the main principles of

onion routing and was changed as the second generation was released, making it pos-

sible to run a client and an onion router separately.

2.2.2 Second generation (2004 - 2006)

Various techniques were added to the second generation in an effort to increase in-

formation security. One technique is to send messages with random data, called pad-

dings, along with normal traffic to make it harder for an outsider to analyse traffic.

Second technique is to limit bandwidth to a constant rate, which eliminates identifia-

ble changes in traffic flows. Paddings and bandwidth-limiting were thought to render

traffic analysis harder, but these techniques were noted to be too computationally

expensive in relation to the security they offer. Paddings and bandwidth-limiting

were removed prior to third generation.

Some anonymity-offering crypto networks are based on mixing of components rather

than forming an unpredicted route. These networks are generally called Mix networks

7

(developed by David Chaum in 1981) [8]. The purpose of mixing is to make it harder

to connect incoming messages to crypted outgoing messages to each other.

Mix-technology was experimentally included to the second generation of onion rout-

ing. The purpose of this experimenting was to explore the security advantages mix-

ing would offer. It was envisioned that adopting an already-widely-used method

would make onion routing more acceptable to the wider audience.

Mixing was eventually abandoned in the third generation for the same reasons as

paddings and bandwidth-limiting; it did not increase the information security enough

and it increased the computing cost considerably. Doing the actual mixing is not

computationally expensive, but adding mixing creates a risk of someone being able

to eavesdrop to the messages and so far an inexpensive way of preventing this has

not been found.

Another major change, in addition to mixing, was allowing the creation of circuits

longer than five nodes. In this version the length of the circuits varied and in one

chain there could be up to eleven nodes. By tunnelling the chains, or combining mul-

tiple chains, the path length could grow even larger. As with mixing and padding

schemes, also this change was stated to be unnecessary and the number of nodes was

restored to five in the next generation.

2.2.3 Third generation (2006 -)

Third generation is the last version of onion routing. The development onion routing

is still on going, so the features may in the future change from what is stated here.

We will however, look at the features of the third generation in the form as it was

published in 2006. The differences between this generation and the previous one are

smaller than the differences between first and second generations.

The biggest alteration from previous versions is in the protocol with which encryp-

tion keys are distributed to nodes when a circuit is first created. The first version

used the onion -data structure for building the path [28]. This version uses Diffie-

Hellman protocol to distribute the keys to the nodes incrementally. This implements

so called forward secrecy, which means that even if an attacker could decrypt and

8

take possession of a single encryption key, they could not use it to open the other

onion layers.

Another change in this version was the addition of directory servers. Before this

change the information about network addresses was issued externally from the net-

work. When the size of the network grows, this kind of way of giving out infor-

mation becomes impossible and directory servers offer a flexible way of solving this

problem. This also increases security, because the distributed information can be

surveyed.

Next chapter takes a closer look at the actual implementation of the third generation

onion technology. For recapitulation, table 1 shows a small technical comparison

between the generations.

 Year pub-

lished
Mixing

added
Length

of chain
Client and

server
Key distribution

protocol

1.Generation 1996 [28] No 5 Integrated Using onions

2.Generation 2004 [22] Yes 1 --11 Separate Using onions

3.Generation 2006 [22] No 5 Separate Diffie-Hellman

protocol

Table1. The most distinctive features between different generations

9

3 Tor

First version of onion routing was published in 1996 [28]. When Office of Naval

Research funded the project, they also maintained a website in which information of

the progress of the project was published. This site contained technical information

about the different generations and also scientific articles regarding onion routing. As

ONR ended the funding in 2004, also the maintaining of the website was stopped and

the site was shut down [22]. There is, however a copy of the site held in the address

www.onion-router.net [22].

When ONR discontinued the financial support, Electronic Frontier Foundation, or

shortly EFF, started financing the project. Paul Syverson and the onion team had

time to release three onion routing generations under ONR funding. When the funder

changed, a shift to open source was made and along that the new homepage has

moved to the address www.torproject.org [35]. Both the old and the new website

have been an important source of information for this thesis.

With the new website also an application called Tor was published. The purpose of

Tor is to create a network that protects it’s user from identification by using the on-

ion routing technology. In other words, Tor is an implementation of onion routing in

practice. From here on forwards, when discussing about onion routing, we are talking

about Tor, the third generation onion routing implementation, and vice versa.

3.1 Tor Browser Bundle

The Tor application is written in C programming language, and its source code is

maintained in a public repository in the address gitweb.torproject.org/tor.git. In order

to use the application any user can download a package called Tor Browser Bundle,

or TBB, from the projects website ([35]). TBB contains a program that allows the

user to connect to the Tor network as a client and a special Firefox browser that can

be used to connect to websites.

Tor Browser Bundle contains the necessary software for running a client and a relay.

10

TBB is preconfigured to act as a client and the user does not necessarily need to do

any additional configuration to use the software [35]. There are however, some ac-

tions that the user can do to increase privacy such as turning on an extension called

NoScript that turns JavaSript off from pages and using only HTTPS to form connec-

tions. To add a new Tor relay to the network the user needs to edit a configuration

file with port info and exit policies.

Clients use the Tor software to form connections through relays. All the computers

connecting to each other with TBB form a network, which is referred to as the Tor

network. To work efficiently, the Tor network needs also other kinds of components

despite clients and relays. Let’s take a look at what other components Tor network

has.

3.2 Tor network

In its simplest abstraction, an implementation of the onion routing network consists

of clients that use the network to send messages, and routers, or relays, that receive

onions, peel them and pass them along in the circuit to the next node. In addition to

clients and relays, Tor network has for example name servers that keep track of serv-

ers that are registered to the network, and hidden services that can be used for exam-

ple web publishing. Hidden services can be connected to only through specific Tor

servers. [8]

Clients and routers form the bulk of the Tor-network [30]. Clients can also act as a

router inside the network, but most of the clients are using the network just to form

connections to other clients, hidden services and external services through other

routers. The amount of clients using the network in March 2016 is around 2 million

and the amount of relays in the network in 2016 is 7000.

To make Tor resistant to eavesdropping, along with normal onion routers, also so

called entry guards have been added to the network [3]. The purpose of entry guards

is to prevent attacks where a malicious party tries to place their router as the first

node of a circuit. In the original implementation the first node was randomly selected

from all routers that have been connected to the network which meant that as long as

the connection were formed again and again for enough times, at some point the ma-

11

licious router would have been selected as the first node. Since the 2006 version

three guard nodes instead of one entry node are chosen from a small number of relia-

ble routers. These three guard nodes will be used for 30 to 60 days for all the circuits

that the client forms, before discarding choosing new entry nodes [17]. This increas-

es the network’s ability to withstand eavesdropping attacks considerably.

Another measure to increase security is the addition of so called bridges [28]. For the

purpose of increasing security some routers do not announce their addresses publicly.

Bridges exist because normal, publicly listed Tor IPs get blocked by some firewalls.

An individual who has no access to Tor network because of such firewalls can use

bridges to go around these filters.

Also hidden services were mentioned earlier. These do not increase the information

security as such, but the existence of hidden services is something that the developers

wanted to enable. These services can be used for example to send instant messages

between clients. When a hidden service wants to publicize its address, it forms some

onion circuits and reports the last router's address of the circuit to name services. A

client can form a connection to the service through rendezvous nodes.

3.3 Creation of an onion circuit

Let’s take a closer look at how a circuit is formed. When a Tor user wants to form a

connection to a server outside of the Tor network, their client software first down-

loads a list of all the registered Tor routers [3]. From these routers first an entry node

is picked. Entry node is the first router in the onion circuit and it is chosen from the

list of routers that the name service has announced to be fast and reliable. In case the

chosen entry node is unreachable, a new entry node is selected to take its place.

After an entry node has been selected, the rest of the circuit is formed. The nodes that

are listed to have the largest bandwidth and uptime are more likely to be added to the

circuit. For the chain to be as stable as possible, only nodes that are diagnosed as

stable are selected. Figure 1 shows a pseudo algorithm, copied from the paper Low-

Resource Routing Attacks Against Tor by Bauer et al. [3], for choosing the exit router

and the middlemost router in the chain. The algorithm differs from the current im-

12

plementation in such a way that the router cannot itself advertise the bandwidth, but

the bandwidth is measured inside the network [26].

13

Algorithm: Non-Entry Router Selection

Input: A list of all known Tor routers,
 router_list
Output: A pseudo-randomly chosen router,
 weighted toward the router advertising

 the highest bandwidth

B ← 0, T ← 0, C ← 0, i ← 0, router_bw ← 0,
bw_list ← Ø

foreach router r ϵ router_list do

 router_bw ← get_router_adv_bw(r)
 B ← B + router_bw

 bw_list ← bw_list ∪ router_bw

end

C ← random_int(1,B)
while T < C do

 T ← T + bw_listi
 i ← i + 1

end

return router_listi

Figure 1: Pseudocode: Algorithm for Non-Entry Router Selection (source: [3]). B = combined

bandwidth of all routers, T = the sum of bandwidths in the lower loop, C = randomly chosen

number from B, i = number of the currently processed bandwidth in the lower loop, rout-

er_bw = advertised bandwidth currently processed in the upper loop, bw_list = list with all

router bandwidths

After three routers have been selected randomly, the chain is formed by generating

the encryption keys one by one with each router using Diffie-Hellman-protocol. The

new key pairs are negotiated incrementally with each node after the keys have been

established with the previous node in the path. This achieves so called forward-

secrecy, meaning that any node cannot trace the keys other nodes are using to open

the messages. After this procedure each router has its own encryption key for creat-

ing and peeling onion layers, and also information about who to send the messages

to. Figure 2 shows the connection to the name service and the onion path after it has

been formed.

14

Figure 2: Alice’s client downloads a list of onion routers from the name service and forms a

circuit. The exit node sends the uncencrypted message to Bob.

As the result of forming the circuit separately with every router, one single node can-

not know the addresses of all the other nodes in the circuit. The first router can see

that the client is connected to the network, but it cannot see the final destination of

the messages that the user sends over Tor. The entry node cannot know what the user

is doing with the network. It receives messages and sends them forward in the chain.

The third, final node can see where the messages are going to, but it cannot see who

has sent them or what the data inside the message is. The third node called an exit

node. The exit node sends the messages to the final receiver.

The final node in the circuit that receives the unencrypted message from the exit

node is not necessarily aware that it is being part of an onion chain, because the mes-

sages leave the exit node unencrypted. Only by comparing the sender information

from the header to a list of known Tor routers (a list is kept in the site tor-

status.blutmagie.de [33]) the receiver can know that the messages are arriving from

inside the onion network. Many internet services choose to block traffic coming

through Tor addresses.

15

3.4 A message's journey through an onion circuit

DeFabbia-Kane [7] describes the course of a message through the onion network in a

following manner: a client forms an n-length onion chain (as described previously),

after which the chain consists of routers R1, …, Rn to which the client has distributed

a symmetric key Ki by using Diffie-Hellman-protocol. Before a message is sent, the

client first encrypts it with an encryption key Kn, and after this with the key Kn-1 all

the way to level K1.

Alice wants to send a message to Bob anonymously via Tor. She has formed an on-

ion circuit with three onion nodes: R1 → R2 → R3. The notation [M]Kᵢ means that the

message M is encrypted with a symmetric key Ki and the notation [M]Kᵢ,ⱼ,ₖ means that

the message M is encrypted first with the key Ki, then with the key Kj, and after this

with the key Kk. Before Alice sends the message through the circuit, her client en-

crypts it with the key K3, then with the key K2 and lastly with the key K1. The mes-

sage that Alice’s client eventually sends will be [M]K₃,₂,₁.

Every router opens, or decrypts, the message with their own encryption key Ki as the

message travels inside the chain. After the router has decrypted the message, it sends

it to the next router in the chain (or to Bob, if the router is the last node in the chain).

As M travels through the chain, it will look like this:

Alice
[M]K₃,₂,₁ R1

[M]K₃,₂ R2
[M]K₃

R3
M

Bob

When Bob sends a response message Mꞌ, he will send it to the router R3, which en-

crypts it with the key K3 and sends it backwards in the chain. Every router Ri en-

crypts the message with the key Ki. The path of the message backwards in the chain

looks very similar to the path of the messages M path forwards in the chain. Because

only Alice know all three keys K1, K2 and K3, only she can open the message Mꞌ and

read it.

Alice
[M]K₃,₂,₁ R1

 [M]K₃,₂ R2
[M]K₃

R3
 M

Bob

16

3.5 Cells

The messages that are passed between nodes inside onion circuits are called cells [8].

In addition to relaying data, cells can also be used for example for creating circuits

(so called CREATE cells), destroying circuits (DESTROY cells) and keeping a con-

nection alive (PADDING cells). Cells have a fixed size of 512 bytes mainly for the

reason of preventing traffic analysis. All other cells but relay cells are called control

cells and they have a header that describes their circuit identifier, which is called

circID, and the purpose of the cell, called control cell command, or CMD.

The cells that are used for relaying messages are called relay cells. These cells have a

little more information in the header than the control cells: in addition to circID and

CMD the relay cells header states a stream identifier, a checksum and the length of

the payload. The data payload is 498 bytes long and it can be used also to relay con-

trol cells to individual nodes in the circuits, for example when doing a Diffie-

Hellman handshake. Figure 3 shows the structure of a control cell and a relay cell.

2 1 509 bytes

CirID CMD DATA

Figure 3: Control cell header (upper) and a relay cell header (lower) [8].

2 1 2 6 2 1 498

CirID Relay StreamID Digest Len CMD DATA

17

There are various types of relay cells. RELAY DATA cells are used to pass data

forward or backward in the circuit. RELAY BEGIN cells are used to open a stream,

which RELAY END cell closes. Relay cells are also used to create the actual circuit

via RELAY EXTEND cells. The “extend” cell tells an onion router to pass a hand-

shake on to a specified router and the router responds with a CREATED cell in case

the handshake was successful. Figure 4 shows a diagram of how the cells are used

when creating a two-hop circuit.

Figure 4: Creating the first two hops of a circuit.

18

4 Attack threats

The objective of onion routing is to prevent the localization and identification of the

user. This means that attacks against the system try to connect for example logs of

visiting a website or sending messages back to the user. In this chapter we take look

at what kind of attacks have been developed against Tor. In what different ways can

a potential attacker try to deanonymize users and how is the network designed to

defend against these kind of attacks? Some attacks may have only the purpose of

lowering the service quality with for example Denial-of-service attacks, but we leave

these kinds of attacks out of our scope in this thesis and concentrate on deanonymiz-

ing attacks.

Onion routing protects against identification with obfuscation. In practice onion rout-

ing can only provide anonymity if it’s user base is large enough [28]. The more users

the network has, the more targets there are to combine a certain activity to. This

means that a single user cannot establish their own onion network and create them-

selves anonymous protection. The strength of Tor is that it is not possible for outsid-

ers to follow the path of the messages and also trace the messages that are coming

out of the network back to whoever send them. This is at least the concept.

There are numerous different attacks devised against cryptographic systems. Most of

the attacks against Tor are based on the attempt of taking over one or two routers

within the network. Usually at least one entry node router within the circuit and pos-

sibly also the exit node within the same circuit. With this setup it is possible to do a

traffic analysis attack that tries to associate inbound and outbound messages. Passive

attacks monitor the stream of messages without interfering with it and active attacks

modify the traffic somehow to make the analysis easier. In this chapter we will take a

look at what other kinds of attack types are designed against the system.

19

Figure 5: The adversary attempts to place the routers they control as an entry and exit

node.

4.1 Attack categories

Salo [26] divides attacks into five categories according to different features. The five

attack categories by Salo are probabilistic models, entry and exit onion router selec-

tion attacks, AS and global level attacks, traffic and time analysis based attacks, and

protocol vulnerabilities. In his article Salo lists these categories and describes previ-

ously publicized attacks that belong to these categories. Let us go over these briefly.

Probabilistic models use mathematical probability models to analyse the network.

These models are originally designed for Mix-networks and they use Bayesian prob-

ability models to measure how secure the network is. The same kind of models have

been designed for Tor [11]. The models treat the system as a black box, trying to

create mathematical models based on two assumptions: firstly, that only one user is

linked to one output and secondly, that the output can be linked back to the user in

case both can be observed. These models are not actually attacks, but rather offer a

way of measuring how possible it is for an attacker to deanonymize a user.

20

Entry and exit onion router selection attacks aim at increasing the probability of

the attacker’s routers to be chosen as the entry and/or exit node. Salo mentions two

attacks from this category: first, Compromising Anonymity Using Packet Spinning

[24], tries to create loops between routers so that they can be made to refuse serving

other clients, in practice killing the router. The goal is to inflate the probability of the

malicious routers to be chosen to be a part of a particular circuit. Another attack in

this category is Low-Resource Routing Attacks Against Tor [5] that tries to announce

false information about the bandwidth and uptime of the router to the name service,

which gives the router more priority when entry nodes are chosen.

Traffic and time analysis based attacks covers the biggest amount of attacks as a

category. These kind of attacks try to weaken anonymity by observing patterns in the

traffic, for example in network flow timing. With these patterns the adversary can

correlate incoming and outgoing network traffic. Passive attacks observe the packets

going through the system and active attacks try to for example water mark packets to

make them easier to analyse.

There are seven research papers in this category: Low-Cost Traffic Analysis of Tor

[19] presents a way to trace nodes that are used in a circuit and also a way to link

unrelated streams to their initiator based on different latencies in streams, A cell

counter based attack against Tor [16] presents traffic analysis technique by water-

marking the cell counter of a cell, Browser-Based Attacks on Tor [1] uses a man-in-

the-middle attack and modifies HTTP-traffic to improve analysis, A Practical Con-

gestion Attack on Tor Using Long Paths [10] uses a congestion attack with HTTP-

stream modification to learn circuit paths, How Much Anonymity does Network La-

tency Leak? [12] measures network latencies to recognize a user, and Passive-

Logging Attacks Against Anonymous Communications Systems [40] observes user

behaviour and tries to predict the initiator of a certain path.

AS (autonomous system) and global level attacks assume an attacker that can ob-

serve or manipulate a large part of traffic that goes in and out of the network. This

kind of attacker can use for example traffic and time analysis attacks to recognize

data flows. Tor is not designed to protect the user against AS (meaning autonomous

system) -level adversary [28]. Salo mentions two papers AS-awareness in Tor Path

Selection [9] that tries to evaluate how likely an AS level attacker actually is, and

21

Large Scale Simulation of Tor [21] that evaluates several traffic analysis attacks in a

simulated network.

Protocol vulnerabilities is the last category. These attacks try to find weaknesses

from communications protocols. Effective Attacks in the Tor Authentication Protocol

[41] suggests a vulnerability in the way session keys are distributed, that will lead to

inconsistencies in the session keys. On the risks of serving whenever you surf [18]

tries to recognize bridges in the Tor-network. The attacker first tries to recognize

possible bridge-candidates and after this tries to confirm the findings with an active

circuit clogging attack.

22

5 New attacks against Tor

Attacks against Tor seems to be a popular research subject at least by looking at the

amount of papers one can find with a simple google scholar search. After 2010 there

has been a lot of new papers on the subject and we will look at some more popular

ones and less popular ones here.

5.1 The Bad Apple Attack

In 2010 researchers Le Blond et al. from French Institute for Research in Computer

Science and Automation discovered a way of tracing TCP streams of peer-to-peer

(P2P) applications running over Tor [4]. With this attack the researchers were able to

trace nine percent of all streams going through their exit nodes, revealing among

other things 10,000 BitTorrent users, which is a protocol for sharing files in a P2P

network. With this information they were able to profile BitTorrent usage.

5.1.1 Outline of the attack

The researchers conducted their experiment over 23 days, monitoring six exit nodes

that they controlled. For ethical reasons they did not store any information that could

be used to identify the targets later. The attack is based on the observation that alt-

hough BitTorrent users may search for peers from inside Tor, actually majority of

them still do the actual sharing of the content outside of the Tor network. There may

be multiple reasons for this: firstly, sharing content outside of Tor is simply much

more efficient due to higher bandwidth, and secondly Tor does not support UDP,

which is the protocol that BitTorrent uses to share information about users in the P2P

network with so called DHT trackers.

The researchers found that 72 percent of BitTorrent users either subscribe their pub-

lic IP to the DHT tracker and/or form P2P connections with their public IP. The at-

tacker can easily add their IP to the list of peers and wait until another peer connects

to it. By comparing the connected IP to the list of known Tor exit nodes it is possible

to know whether the connection is coming from Tor or outside of it. Another way of

identifying users is by monitoring subscriptions to the DHT through an exit node.

23

The subscribed IP must be outside of Tor, because Tor does not support UDP used

by the DHT. By comparing the subscribed IP/port combinations in the list of sub-

scriptions and handshakes to the targeted user, it is possible to identify the Tor user.

After revealing the source IP of one stream in an exit node, all streams within that

circuit can be traced to the same user. Tracing streams in different circuits can be

done with the peer identifier or by comparing IP/port. With this information the re-

searchers were able to profile BitTorrent usage inside Tor, for example amount of

streams, countries of origin and amount of users. The analysis also revealed huge

amount of other streams, such as HTTP streams from some browsers. With the

browser information the researchers were able to see what kind of websites normal

Tor users were interested in.

The original article [4] adds to other studies trying to profile Tor users, but it also

introduces a new attack method that could be used to reveal IP addresses of the users.

This could also potentially threaten other anonymity offering services. Defences

against the attack mostly depend on the user to take caution when using the system.

The researchers also note that Peer Exchange (PEX) and centralized UDP tracking

could still be exploited in same way, which could be a potential research subject in

the future.

5.2 Application-level attack

A paper published in 2011 by researchers from Southeast University of China and

Changzhou College of Information Technology China, introduces a man-in-the-

middle attack against TCP based low-latency applications [38]. There are two attack

schemes: in forged webpage injection attack a malicious exit node responds with

fake web pages to the client's web requests, creating a distinctive traffic pattern for

traffic analysis. Target webpage modification attack is similar, but instead than re-

sponding with a totally new webpage, it passes the original page forward to minimize

lag, but instead injects invisible links in to the page. Both of these attacks can poten-

tially be used to identify a client.

24

5.2.1 Outline of the attack

The first scheme, forged webpage injection attack, creates a more distinctive pattern

than the second one, so recognizing flows is more effective. The attack requires one

entry router and one exit router to be placed in to the Tor network. Exit router re-

sponds to a web request with a forged webpage that contains img tags that the tar-

get’s web browser is then tricked to fetch. Example of a forged webpage from the

original paper [38] is shown below. The request to fetch these images creates a traffic

pattern consisting of relay cells five times the amount of the number of inserted img

tags within a specific timespan. The entry router can recognize the cells from the

circuit identifier (CircID) and cell command (CMD or Relay). After this the commu-

nication flow can be confirmed by comparing pattern observations between the entry

and exit router.

<html>

<head>

<meta http-equiv=”refresh” content=”w;url=URLBob”>

</head>

<body>

… …

</body>

</html>

Source code 1: Example of a forged webpage. Source: [38]

The first version of the attack can be detectable because it creates a delay in the

communication. The second scheme, target webpage modification attack, works sim-

ilarly to the first scheme, but the difference is that the exit node responds with the

authentic web page that it injects some img tags into. In this situation the traffic pat-

tern is harder to detect because the webpage can cause some additional traffic.

Launching the attack several times improves the accuracy.

25

5.2.2 Results and defenses

The researchers analysed the attack and also conducted some experiments with a

small sample network. According to the article [38], the analysis shows both

schemes of the attack to be viable for profiling clients and hidden servers. Detection

rate of scheme one does not suffer from links within the target webpage, but the de-

tection rate of scheme two decreases if the target webpage contains links. Still both

schemes remained effective for correlating the connection.

Three defences are proposed against the attack. First defence is to reduce the change

of selecting a malicious router to the circuit by deploying more unmalicious routers

to the network and by improving the router selection algorithm to be stricter with the

selection. Second defence is to try to detect abnormal activity such as fetching invis-

ible images before showing a webpage. Third defence is to use HTTPS for connec-

tion to prevent man-in-the-middle attack.

5.3 Probabilistic Analysis in a Black-box Model

Joan Feigenbaum from Yale University, and Aaron Johnson and Paul Syverson from

U.S. Naval Research Laboratory published a paper in 2012 about probabilistic analy-

sis of onion routing [11]. This method is not actually an attack against the system in

the definition that it would try to strip away the user’s anonymity, but it does fall

under the attack categories we introduced in the beginning of this chapter. The pur-

pose of this article is to provide a mathematical proof of the anonymity that onion

routing provides. The proof is modelled against a computationally bounded active

adversary that compromises some unknown part of the system.

The model that they use for the analysis is an abstraction of an anonymous-providing

system, so it could potentially also be used to analyse other anonymous systems.

There are three assumptions made about the system in the model they describe: First-

ly, it is possible for the adversary to know when they are observing a user or not.

Secondly, a single user can be linked only to one connection in the system. The third

assumption is that it is not possible for the adversary to know whether a user and a

connection are part of a same flow just by observing the system.

26

The anonymity that this model describes is the relationship anonymity of users,

measuring how well an adversary can determine if two parties have communicated

with each other. Basically the anonymity of the system is measured with the posteri-

or probability of user choosing a certain destination. In their 29-page paper the re-

searchers estimate simplistic lower bound values and worst case upped bound values

to the user’s anonymity in Tor network.

The paper shows that an user’s anonymity is the worst when at least every other user

has the same destination as them, but this is of course a very unlikely situation and

this is why a more realistic scenario based on Zipfian distribution is evaluated.

(Zipf’s law tells us that the connections to destinations are not evenly distributed, but

the most popular connections will have exponentially more connections than the less

popular ones.) By using Zipfian distribution it is shown that the anonymity of the

system is usually very strong, close to the lower bound.

This model is of course an abstraction that does not take into account many known

attacks against onion routing, but it is trying to continue an on-going process of giv-

ing a formalization of anonymity that covers most of these situations. More work

studying for example the effect of entry node and entry guard security is a subject for

future research.

5.4 CellFlood

CellFlood is an attack that can be used to render Tor routers unavailable for users by

sending requests continuously to them until the router refuses to serve other clients

[2]. This Denial-of-Service attack was discovered in 2013 by four researchers from

Sapienza University in Rome and Columbia University in New York. The research-

ers also developed a defence including so-called client puzzles against this attack,

which also was added to the Tor software.

5.4.1 Outline of the attack

The attack makes use of the fact that encrypting messages with public keys is about

twenty times easier than opening the encrypted messages with a private key. When

the onion circuit is first created, the session keys for each router are distributed using

27

each router’s public key by using so called CREATE cells. The cost of sending copi-

ous amounts of CREATE cells to an onion router is a lot cheaper for an attacker than

it is for the attacked router.

The router processes the CREATE cells in a separate process from the main relay

thread, so receiving large amounts of CREATE cells does not disturb the message

relay process. However, the background process for creating new connections can

only do a limited amount of work, and when it cannot process any new requests, it

starts discarding them. It was discovered that the adversary router does not even need

to create new cells for every request it sends, but it can keep sending the same cell

over and over again. This makes it possible to perform a cheap DoS attack to prevent

a certain router from creating any new circuits and serving any new clients.

5.4.2 Results and defenses

The researchers experimented with the attack in a controlled environment and with

the real-world Tor network and in all of their tests the attack remained very effective

in disturbing the targets capability of processing new requests [2]. They also estimat-

ed how much of an impact CellFlood could have and estimated that an adversary

would need little bandwidth, around 116-232 Mbits/s, to clog a single router.

The proposed and implemented defence is to make the client do some computational-

ly intensive work every time it wants to send a processing request to a router. This

work usually involves solving a cryptographic puzzle that the entry router verifies to

be correct. The researchers measured that this kind of client puzzle takes at most

moderate amount of toll on genuine clients and is effective at stopping CellFlood –

type DoS attacks.

5.5 EgotisticalGiraffe

In the year 2013 Edward Snowden famously leaked thousands of top-secret docu-

ments of the National Security Agency (NSA) in United States. One of these thou-

sands of documents was a PowerPoint presentation that described how the agency

was able to identify some Tor users (published for example here: [25]). Although

28

there is no official documentation available for this attack method, it is easy to get a

picture of how it was done, so we will take a brief look at the method here.

5.5.1 Outline of the attack

The attack has two phases: the first aim is to identify Tor users in the internet and

after this the aim is to direct the identified users to a site that would infect the user’s

computer with some custom malware for further identification. The first phase of

identifying a Tor user is fairly straightforward. The package in which users download

the Tor application software is called Tor Browser Bundle and it comes with a cus-

tom Firefox browser configured for browsing Tor. Usually Firefox browsers an-

nounce a BuildID that tells a website the release version of the browser that a user is

browsing the site with. The slides announce that Tor Browser Bundle’s BuildID was

by default set to zero, instead of a standard build number, meaning that users access-

ing sites with Firefox browsers with BuildID zero are potential Tor users.

The second phase of the attack is to do a man-in-the-middle attack to infect the po-

tential Tor user’s computer with a malicious Firefox exploit. The target user was

directed into a special server that would then infect the user’s browser with a special-

ly designed exploit. The particular exploit mentioned in the leaked slides uses an

extension for JavaScript, but it is rumoured that also other vulnerabilities were used

[27]. After the user’s computer was infected with this malicious exploit, it would

send all kinds of callback data about the user, which could easily be used to identify

them.

5.5.2 Results and defenses

The slides also report that some tests were conducted and there were some initial

problems with Tor Browser Bundle but eventually they got it working. Other than

that it is not known how much user data this particular attack was able to produce.

Shortly after this attack was publicized the JavaScript vulnerability in Firefox was

fixed by Mozilla by disabling the exploited feature called E4X. Along with this also

the vulnerability in the Tor Browser bundle was fixed. The Tor Browser Bundle also

comes with an option called NoScript that would disable this kind of attacks but it is

not enabled by default and requires the user to enable it by themselves.

29

5.6 Sniper Attack

In 2014 four researchers from NRL and Humboldt University of Berlin found a new

weakness in Tor’s flow control algorithms [13]. They named a new attack exploiting

this weakness Sniper Attack. The attack requires minimal amount of resources and it

can be used to paralyze arbitrary nodes from the Tor network. According to the re-

searchers, Sniper Attack can be potentially used to break the anonymity of hidden

services. They developed three different defences against this attack and one of these

defences were added to the Tor software.

5.6.1 Outline of the attack

Sniper Attack exploits Tor’s so-called flow control. Flow control is used in the situa-

tion when large amounts of packets are sent from one location to another, for exam-

ple from server to client. Just sending a big chunk of data packages at once may

overload the receiving end so flow control is needed to pace the rate of package de-

livery. Flow control allows the client to control the rate of transmission by making

the exit node of the circuit to buffer data and allowing the client to send so called

SENDME cells every time it is ready to read from this buffer. The delivery end keeps

a buffer of 1000 cells in its memory and sends 100 cells for every SENDME call it

receives (adding another 100 cells to the buffer). The protocol goes as follows:

1. Client has formed a circuit through onion network to an external server

2. Client: Send request to start downloading data from the server

3. Exit: Sends the request to server and starts buffering data up to a 1000 cells

4. Client: Reads data and sends SENDME when 100 cells have been read

5. Exit: Adds another 100 cells to the buffer

6. If not all data have been read, go to step four

This protocol can be exploited to attack either entry nodes or exit nodes by two dif-

ferent ways. The first version of the attack is illustrated in figure 5. If a malicious

party wants to shut down an entry node, it forms a circuit in such a way that the ad-

versary’s own node is used as an exit. The protocol assumes that the exit node does

the actual flow control, but because in this situation the exit is being controlled by

the attacker, it can send as much data as they want to, ignoring the package flow con-

30

trol limits. The trick here is that the client does not read from the buffer and the exit

sends loads of data forwards, which causes the data packets to be built up to the entry

node’s buffer, eventually causing it to crash.

Figure 6: Adversary controls the client and the exit node, targeting the entry node (marked with

X). The exit node sends amount of data through the circuit and simultaneously client stops read-

ing from the entry node which causes the entry nodes buffer to fill up and eventually crash. [13]

The other way of targeting exit nodes goes very similarly, but the data is sent to the

other direction in the circuit. The client, controlled by the attacker, sends loads of

data towards a server while again ignoring the flow control limits. The receiving

server, owned by also by the adversary, stops reading from the connection, causing

the data to fill up the exit nodes buffer. This also causes the targeted node to eventu-

ally crash.

There is also an efficient version of the second attack, which requires the adversary

to only control a client. The exit node has the 1000 cell limit, after which it stops

buffering data and closes the circuit, but the middle and entry nodes do not have such

limits, and they will keep on buffering until the client instructs otherwise. Keeping

the exit node sending packages by sending SENDMEs, the adversary can keep inject-

ing data to the circuit without reading from it. By combining multiple streams the

attack can be very effective. Sniper attack, including how it can be performed while

31

avoiding detection, is described in more detail in the paper The Sniper Attack: Anon-

ymously Deanonymizing and Disabling the Tor Network [13].

5.6.2 Results and defenses

Sniper Attack can be used to force a hidden service to choose the attackers node as a

guard relay and to use this malicious guard relay to deanonymize the hidden service.

The researchers tested this attack and found out that deanonymizing hidden services

with this attack would be possible and estimate that attacker could use it to disable

top 20 Tor exit relays.

The defence that was chosen to be added to Tor is to kill a circuit if its memory starts

to run out. After this the Sniper attack became ineffective. The authors however re-

mind that even though the Sniper attack cannot no longer be used to DoS a router, it

can be still used to consume its bandwidth. [20]

5.7 New traffic confirmation attacks

During the recent years there have been published a number of traffic confirmation

(or traffic correlation) attacks using different techniques, for example flow records

from a software called Netflow [5], signal injection to pass information between

nodes [32] and circuit fingerprinting by tagging the traffic to make correlation easier

[14]. Traffic confirmation attacks as a group has definitely the biggest number of

attacks developed. The Tor development team has from the beginning, commented

on traffic confirmation attacks, saying that it is trivial to focus on traffic confirmation

attacks, since onion routing does not try to defend against these. Instead Tor tries to

defend against traffic analysis attacks, which the adversary can use to know which

points in the network to attack [8].

In 2014 the developers commented on their blog about the new traffic confirmation

attack on using netflow logs that:

“It’s great to see more research on traffic correlation attacks, especially on

attacks that don’t need to see the whole flow on each side. But it’s also im-

portant to realize that traffic correlation attacks are not a new area”. [37]

32

We will go through some of the new attacks briefly.

5.7.1 Flow records

A paper titled On the Effectiveness of Traffic Analysis Against Anonymity Networks

Using Flow Records (2014) evaluates if NetFlow -network analysis software pack-

aged within Cisco routers can be used to analyse anonymous networks such as Tor

[5]. The NetFlow software itself is not accurate enough for traffic analysis, but the

records it provides can potentially be analysed to find a source of a connection com-

ing to a server. The authors present an attack that assumes a large AS-level adver-

sary, but they say that the attack can also be done by a non-AS attacker if a target

entry node can be identified.

The attack uses NetFlow data between the server and the exit, and entry and the cli-

ent to find matched patterns with Pearson’s correlation coefficient. It also injects

some traffic patterns in to the TCP connection. The paper reports 81,4 % success rate

with 12,2 % false negatives and 6,4 % false positives on the real Tor network.

5.7.2 “Relay early” Traffic confirmation attack

This is another attack that has no paper written about, but got a lot of publicity [34]

[29]. The details were reported in the Tor blog in July 2014 when it was detected that

some unknown attacker was doing an active traffic confirmation attack against Tor

network [32]. The attack exploited so called “relay early” –cells that were added to

Tor to prevent building very long paths. The attackers used these relay early cells

against their designed purpose to send information about hidden service addresses

from exit nodes to malicious entry nodes which the attackers has previously placed

into the network.

It is not known what information the attackers were able to gain from this attack or

even if the attackers purpose was research, mischief or something else. Most likely

the attackers did not get any user or hidden service addresses or anything else that

would compromise user security [32]. As usual the Tor software was upgraded with

defences, main one preventing “relay early” cells to be used in attacks like this. To

prevent this kind of attacks in the future there is also a plan to change Tor clients to

33

use only one entry guard, instead of three, to reduce the exposure of clients in the

network, but this has not yet been implemented.

5.7.3 Circuit fingerprinting attacks

The paper Circuit Fingerprinting Attacks: Passive Deanonymization of Tor Hidden

Services published in 2015 takes a look at some possible weaknesses in hidden ser-

vice communication and proposes two new attacks with some possible defence

schemes [14]. The first attack starts by looking for traffic that looks like hidden ser-

vice creation and after this tries to identify the service with a website fingerprinting

attack. The second attack is aimed at the scenario where the client uses only one en-

try guard, in which case a malicious entry guard can see all of the client’s circuits.

The effectiveness of both attacks were evaluated in the real-world Tor network. The

researchers report 98% and 99% present true positive rates with the attacks and 0.1

% and 0.07 % false positive rates. They also propose some defences against the at-

tacks: reducing circuit lifetime and sending random padding cells. Against the sec-

ond attack it is suggested to build circuits pre-emptively to eliminate the identifica-

tion of hidden service circuit establishment.

5.8 A Stealthy Attack Against Tor Guard Selection

In 2015 three researchers from University of Electronic Science and Technology of

China and Chinese Academy of Sciences discovered a way to speed up the rate at

which new guard nodes are chosen to an onion circuit in a situation where an attacker

is able to control part of user’s entry point traffic [17]. Normally the client uses a

single guard node for one to two months before choosing another one. The probabil-

ity of choosing a malicious entry node is described in the following way:

“…if an attacker controls C out N relays (ignoring bandwidth), then the at-

tacker will control both the entry and exit nodes of any given circuit with

probability (C / N)2 … While using entry guards, we would have probability

(N - C) / N  to choose a good entry and not be compromised until the next

round of entry guards “ [17]

34

5.8.1 Outline of the attack and results

The first part of the attack aims to increase the possibility of a target user (called Al-

ice) selecting the attackers router as the guard node. The guard nodes are selected

randomly, but more weight is given to nodes with higher bandwidth. This is why the

attacker needs to deploy routers with a high bandwidth as guard nodes. Also, the

more guard nodes the attacker has in their control, the more likely it is for Alice to

select one of these as a router. So increasing the change of Alice selecting a mali-

cious guard node is done by deploying as many high bandwidth guard nodes as pos-

sible.

The second part of the attack tries to shorten the time in which Alice selects the

guard nodes. This time interval is normally 30-60 days, but it can be increased to

around one to one and a half minutes by blocking two out of the three selected guard

nodes Alice has selected. As this attack requires the attacker to be able to control part

the target user’s traffic, they can block the traffic to all but one guard nodes.

The researchers evaluate the attack to be very hard to detect and very effectively

compromising the target user’s anonymity. The attack does not affect the targeted

user’s network usage and their experiment results show that more than 80% of the

users can be compromised in about 30 minutes with this technique.

35

6 Refined attack categories

After taking a look at some papers published in the recent years, we now have a wid-

er picture of different ways with which an adversary could approach the task of

breaking the anonymity provided by onion routing. The list of papers mentioned in

this chapter is certainly not exhaustive, but the purpose is rather to provide examples

of different types of existing attack techniques. After looking at theoretical and prac-

tical examples, it is easier to classify older and newer attacks and see where what

their unique characteristics are.

We have created some categories in order to classify the attacks that are introduced

previously. The classification criteria has mainly been the main purpose of the attack

and what kind of features it exploits. Often the categorization is not clear. The meth-

ods may have one or more distinctive features that may be similar to two different

categories, the attack may have multiple different uses or different types of attacks

may be chained together, which make it harder to differentiate the category. Looking

at the designed main use however often aids with this process and we have been able

to create distinct categories, which we will introduce next.

In our classification we have dropped “probabilistic models” from our previously

introduced categories in the beginning of this chapter and combined “protocol vul-

nerabilities” with other categories. The reason that probabilistic models are not in-

cluded in our classification is that they do not belong under our main topic since

these kind of techniques do not pose any kind of methodologies or vulnerabilities

that help with compromising the anonymity of Tor. These models aim at evaluating

how good the security of Tor is, not to “break it”.

The category “protocol vulnerabilities” can be a subcategory of either “entry and exit

onion router selection attacks” or “traffic and time analysis based attacks” and some-

times the distinction between these categories is blurry, so we do not separate attacks

using protocol vulnerabilities. In some cases the distinction however can be made.

Some of the attacks falling under protocol vulnerabilities can be used for other kinds

of mischief, such as lowering the usability of the network, but here we will only con-

36

centrate on the aspect of an adversary trying to deanonymize users or hidden ser-

vices.

6.1 Final categories

Our first proposed category is Entry and exit onion router selection attacks. These

attacks raise the possibility of the adversary’s router to be selected as an entry and/or

exit node to a circuit. The usual way is to do some kind of Denial-Of-Service attack

to stop other routers from serving other clients, but there are also other ways to reach

the same goal. For example [13] and [2] belong to this category, because they try to

consume resources of non-malicious routers to get the adversary routers to be chosen

as an entry or exit node.

The next category, Traffic and time analysis based attacks, covers attacks that try

to analyse traffic and try to correlate streams to connect circuit source to its destina-

tion. This category can be divided into passive and active attacks. Passive attacks

monitor the traffic without altering it and active attacks can use for example message

tagging to make the analysis more efficient. It is easy to see that for example the traf-

fic confirmation methods introduced in [32] and [14] fall under the category of traffic

and time analysis based attacks.

We have given the attacks introduced in [11], [38] and [25] their own category be-

cause they have very distinct characteristics from any other attack category. We first

thought about naming this category “application-level attacks”, but because in the

OSI-model [23] "application-level" refers to the TCP/IP layer that Tor is part of, to

avoid confusion we suggest the term software-level attacks for this category. At-

tacks in the category “software-level attacks” do not utilize the Tor implementation

or protocols directly, but they rather make use of the applications that use Tor con-

nection to download and send data. Usually these types of applications are not de-

signed with anonymous protocols in mind and this is why they may leak some sensi-

tive information about their users. For example application-level attack in [38] makes

use of the fact that normal HTTP-level protocols are not designed against traffic

analysis. With this technique the browser can be used to create distinctive traffic pat-

terns by sending it some, normally harmless, HTML-code.

37

The fourth category is AS and global level attacks. Attacks in this category require

substantially more resources. They assume a powerful adversary that can observe

and/or manipulate a significant part of the traffic going in and out of the whole net-

work. Usually attacks in this category can only be evaluated on a theoretical level or

with simulations. The method described in [5] utilizes a traffic analysis attack which

could also be used by non-AS-level adversary, but it would need an AS-level attack-

er to be truly effective. The attack that blocks some connections described in [17]

could not be executed unless the adversary could manipulate a large part of all the

network connections.

We have described our attack categories and what kind of attacks fall under them and

next we will give an overview of the final categories. We propose the following at-

tack categories and list the related papers under them. The papers from previous cat-

egorization that fall under our classification categories are also mentioned, with the

old category marked in (brackets):

Software-level vulnerabilities

 One bad apple spoils the bunch: exploiting P2P applications to trace and pro-

file Tor users [4]

 A potential HTTP-based application-level attack against Tor. Future

Generation Computer Systems [38]

 EgotisticalGiraffe [25]

 Browser-Based Attacks on Tor [1] (Traffic and time analysis based attacks)

Traffic and time analysis based attacks

 “Relay early” Traffic confirmation attack [32]

 Circuit Fingerprinting Attacks: Passive Deanonymization of Tor Hidden Ser-

vices [14]

 Low-Cost Traffic Analysis of Tor [19] (Traffic and time analysis based at-

tacks)

 A cell counter based attack against Tor [16] (Traffic and time analysis based

attacks)

38

 A Practical Congestion Attack on Tor Using Long Paths [10] (Traffic and

time analysis based attacks)

 How Much Anonymity does Network Latency Leak? [12] (Traffic and time

analysis based attacks)

 Passive-Logging Attacks Against Anonymous Communications Systems [40]

(Traffic and time analysis based attacks)

 On the risks of serving whenever you surf [18] (Protocol vulnerabilities)

Entry and exit onion router selection attacks

 The sniper attack: Anonymously deanonymizing and disabling the Tor net-

work [13]

 CellFlood: Attacking Tor onion routers on the cheap [2]

 Compromising Anonymity Using Packet Spinning [24] (Entry and exit onion

router selection attacks)

 Low-Resource Routing Attacks Against Tor [5] (Entry and exit onion router

selection attacks)

AS and global level attacks

 A Stealthy Attack Against Tor Guard Selection [17]

 On the Effectiveness of Traffic Analysis Against Anonymity Networks Using

Flow Record [5]

6.2 Threat model

Based on the picture we have provided in this chapter, we see that a theoretical at-

tacker would have a certain range of options with which to start deanonymize users

or hidden services. A so called global adversary could use a traffic correlation attack

to identify a large number of flows so they would not have to do anything in addition

in order to get a hold of traffic information. However, as [17] describes, they could

also use some kind of Entry and exit router selection attack to improve their position

for traffic analysis. However this may not be necessary.

39

In case of a non-AS-level attacker, the main attack class that the attacker would use

to break the anonymity, is again traffic analysis. However, before being able to con-

duct any traffic analysis, they would have to do some preliminary steps in order to

get into a position of being able to use a traffic confirmation attack. We have seen

that the attacker can use two different ways to get this to this position: entry and exit

onion router selection attacks or software-level vulnerabilities.

Entry and exit onion router selection attacks cannot by themselves be used to

deanonymize users, so they need to always be followed by some kind of passive or

active analysis method. Software vulnerabilities however may reveal some infor-

mation about users, so they may also lead to deanonymization directly. Figure 5

gives a visualization of the attack model.

Figure 5: The adversary has various options to reach the goal of deanonymizing the target.

Adversary

AS-level

Non-AS-level

Entry and exit

router selection

attack

Software

vulnerabilities

Traffic

Analysis
Deanonymization

40

7 Conclusion

In the first part of this thesis we have travelled through the history of onion routing

from the first version of onion routing published in 1996 to the Tor-application of

today. What started as a US navy project is now carried on by an organization called

The Tor Project and funded by Electronic Frontier Foundation. During this history

three generations have been published from which the last one is still under active

development as can be seen for example from the large amount of research papers

that have been published in the recent years.

Onion routing is based on a simple idea about how to provide anonymization to users

through a distributed solution and we have taken a look at this technology in the sec-

ond part of this paper. The Tor network is the largest known implementation of onion

routing with 7000 routers relaying messages through the network for its 2 000 000

clients. Clients create connections to servers via circuits consisting of three routers as

nodes and the onion –data structure is used to transport data through these circuits.

Tor gives its users so called relationship anonymity, meaning that the communication

relationship between two parties is hidden to all but the communicating parties them-

selves.

The last part of the paper goes a bit deeper into the information security of Tor. We

first take closer a look into eight papers published since 2010. The papers are chosen

on basis of providing examples of different types of attacks against the anonymity of

the Tor user. After this we divide these attack papers into categories according to

what is the purpose and exploitation method of the attack. The categories we propose

are: Entry and exit onion router selection attacks, Traffic and time analysis based

attacks, AS and global level attacks, and Software-level attacks.

7.1 Thoughts about the security of Tor

Onion routing is still being developed actively and any new security flaws are being

fixed once they are discovered, but it seems that there have been no great revelations

in the security of Tor from the first days of the technology. It has been shown that

onion routing is able to withstand large part of the attacks and any successful attacks

41

mostly rely on vulnerabilities outside of the Tor protocol such as user mistakes or

JavaScript vulnerabilities. The developers have from the beginning stated that Tor is

vulnerable against a global passive adversary, but is this really true?

The principle of making Tor a low-latency service means that there is a constant ad-

justment of balance between security and usability. The low-latency principle means

that in theory Tor does not have security against a global passive adversary doing

traffic correlation. Adding Mixing, padding or some other technology would make

the onion technology so expensive to run, that it would be unusable.

However, the principles of making the software open source and allowing free riding

lower the bar for an user to adapt the technology. Because of this Tor has been able

to attract a large amount of users which makes onion routing still very resistant

against traffic correlation. The main problem with traffic correlation attacks is that

they use machine learning which means that in order to reach high confidence levels

they will require large amounts of data. Even a small false positive rate, such as 0.1%

means tens of thousands of falsely flagged streams in a sample of millions of streams

and this can be hard to overcome.

The evaluation still continues of whether or not an AS really exists that could moni-

tor large enough part of the Tor network to confirm the relationship between flows

[11]. As the size of the network grows, the more resources a global adversary would

require to monitor a large enough part of the traffic to do the correlation. Tor is an

open project and the developers encourage users to run relays in their computers to

increase the security of the network and also promote researchers to continue search-

ing for possible security flaws from the technology [31]. Only the future will show

whether the Tor network can serve its increasingly large user base with low latency

and high security.

References

[1] Abbott, T. G., Lai, K. J., Lieberman, M. R., & Price, E. C. (2007, June). Browser-

based attacks on Tor. In Privacy Enhancing Technologies (pp. 184-199). Springer

Berlin Heidelberg.

[2] Barbera, M. V., Kemerlis, V. P., Pappas, V., & Keromytis, A. D. (2013). Cell-

Flood: Attacking Tor onion routers on the cheap. In Computer Security–ESORICS

2013 (pp. 664-681). Springer Berlin Heidelberg.

[3] Bauer, K., McCoy, D., Grunwald, D., Kohno, T., & Sicker, D. (2007, October).

Low-resource routing attacks against tor. In Proceedings of the 2007 ACM workshop

on Privacy in electronic society (pp. 11-20). ACM.

[4] Blond, S. L., Manils, P., Abdelberi, C., Kaafar, M. A. D., Castelluccia, C.,

Legout, A., & Dabbous, W. (2011). One bad apple spoils the bunch: exploiting P2P

applications to trace and profile Tor users. arXiv preprint arXiv:1103.1518.

[5] Chakravarty, S., Barbera, M. V., Portokalidis, G., Polychronakis, M., &

Keromytis, A. D. (2014, March). On the effectiveness of traffic analysis against ano-

nymity networks using flow records. In Passive and Active Measurement(pp. 247-

257). Springer International Publishing.

[6] Chakravarty, S., Barbera, M. V., Portokalidis, G., Polychronakis, M., &

Keromytis, A. D. (2014, March). On the effectiveness of traffic analysis against ano-

nymity networks using flow records. In Passive and Active Measurement(pp. 247-

257). Springer International Publishing.

[7] DeFabbia-Kane, S. (2011). Analyzing the effectiveness of passive correlation

attacks on the tor anonymity network (Doctoral dissertation, Wesleyan University).

[8] Dingledine, R., Mathewson, N., & Syverson, P. (2004). Tor: The second-

generation onion router. Naval Research Lab Washington DC.

[9] Edman, M., & Syverson, P. (2009, November). AS-awareness in Tor path selec-

tion. In Proceedings of the 16th ACM conference on Computer and communications

security (pp. 380-389). ACM.

[10] Evans, N. S., Dingledine, R., & Grothoff, C. (2009, August). A Practical Con-

gestion Attack on Tor Using Long Paths. In USENIX Security Symposium(pp. 33-

50).

[11] Feigenbaum, J., Johnson, A., & Syverson, P. (2012). Probabilistic analysis of

onion routing in a black-box model. ACM Transactions on Information and System

Security (TISSEC), 15(3), 14.

[12] Hopper, N., Vasserman, E. Y., & Chan-Tin, E. (2010). How much anonymity

does network latency leak?. ACM Transactions on Information and System Security

(TISSEC), 13(2), 13.

[13] Jansen, R., Tschorsch, F., Johnson, A., & Scheuermann, B. (2014). The sniper

attack: Anonymously deanonymizing and disabling the Tor network. OFFICE OF

NAVAL RESEARCH ARLINGTON VA.

[14] Kwon, A., AlSabah, M., Lazar, D., Dacier, M., & Devadas, S. (2015). Circuit

fingerprinting attacks: passive deanonymization of tor hidden services. In 24th

USENIX Security Symposium (USENIX Security 15) (pp. 287-302).

[15] Kwon, A., AlSabah, M., Lazar, D., Dacier, M., & Devadas, S. (2015). Circuit

fingerprinting attacks: passive deanonymization of tor hidden services. In 24th

USENIX Security Symposium (USENIX Security 15) (pp. 287-302).

[16] Ling, Z., Luo, J., Yu, W., Fu, X., Xuan, D., & Jia, W. (2009, November). A new

cell counter based attack against tor. In Proceedings of the 16th ACM conference on

Computer and communications security (pp. 578-589). ACM.

[17] Li, Q., Liu, P., & Qin, Z. (2015). A Stealthy Attack Against Tor Guard Selec-

tion.

[18] McLachlan, J., & Hopper, N. (2009, November). On the risks of serving when-

ever you surf: vulnerabilities in Tor's blocking resistance design. InProceedings of

the 8th ACM workshop on Privacy in the electronic society (pp. 31-40). ACM.

[19] Murdoch, S. J., & Danezis, G. (2005, May). Low-cost traffic analysis of Tor. In

Security and Privacy, 2005 IEEE Symposium on (pp. 183-195). IEEE.

[20] New Tor Denial of Service Attacks and Defenses. (2014, January 24). Retrieved

March 23, 2016, from https://blog.torproject.org/blog/new-tor-denial-service-attacks-

and-defenses

[21] O’Gorman, G., & Blott, S. (2007). Large scale simulation of tor. In Advances in

Computer Science–ASIAN 2007. Computer and Network Security (pp. 48-54).

Springer Berlin Heidelberg.

[22] Onion routing. Retrieved March 23, 2016, from http://www.onion-router.net/

[23] OSI model. (n.d.). Retrieved March 23, 2016, from

https://en.wikipedia.org/wiki/OSI_model

[24] Pappas, V., Athanasopoulos, E., Ioannidis, S., & Markatos, E. P. (2008). Com-

promising anonymity using packet spinning. In Information Security (pp. 161-174).

Springer Berlin Heidelberg.

[25] 'Peeling back the layers of Tor with EgotisticalGiraffe' – read the document.

(2013, October 04). Retrieved March 25, 2016, from

http://www.theguardian.com/world/interactive/2013/oct/04/egotistical-giraffe-nsa-

tor-document

[26] Salo, J. (2010). Recent Attacks On Tor. Aalto University.

[27] Schneier, B. (2013, October 04). Attacking Tor: How the NSA targets users'

online anonymity. Retrieved March 23, 2016, from

http://www.theguardian.com/world/2013/oct/04/tor-attacks-nsa-users-online-

anonymity

[28] Syverson, P. (2011, December). A peel of onion. In Proceedings of the 27th

Annual Computer Security Applications Conference (pp. 123-137). ACM.

[29] Tor attack tries to decloak anonymous users (Wired UK). (2014, July 14). Re-

trieved March 13, 2016, from http://www.wired.co.uk/news/archive/2014-07/31/tor-

security-decloaking-attack

[30] Tor Metrics. Retrieved March 23, 2016, from https://metrics.torproject.org/

[31] Tor Research Home. Retrieved March 23, 2016, from

http://research.torproject.org/

[32] Tor security advisory: "relay early" traffic confirmation attack. (2014, July 30).

Retrieved March 23, 2016, from https://blog.torproject.org/blog/tor-security-

advisory-relay-early-traffic-confirmation-attack

[33] TorStatus - Tor Network Status. Retrieved March 28, 2016, from

http://torstatus.blutmagie.de/

[34] Tor suffers traffic confirmation attacks. Say goodbye to anonymity on the Web.

(2014, August 2). Retrieved March 13, 2016, from

http://www.techtimes.com/articles/11711/20140802/tor-suffers-traffic-confirmation-

attacks-say-goodbye-to-anonymity-on-the-web.htm

[35] Tor. Retrieved March 23, 2016, from http://www.torproject.org/

[36] Traffic Analysis. (n.d.). Retrieved March 23, 2016, from

https://en.wikipedia.org/wiki/Traffic_analysis

[37] Traffic correlation using netflows. (2014, November 14). Retrieved March 23,

2016, from https://blog.torproject.org/blog/traffic-correlation-using-netflows

[38] Wang, X., Luo, J., Yang, M., & Ling, Z. (2011). A potential HTTP-based appli-

cation-level attack against Tor. Future Generation Computer Systems,27(1), 67-77.

[39] Who uses Tor? (n.d.). Retrieved March 28, 2016, from

https://www.torproject.org/about/torusers.html.en

[40] Wright, M. K., Adler, M., Levine, B. N., & Shields, C. (2008). Passive-logging

attacks against anonymous communications systems. ACM Transactions on Infor-

mation and System Security (TISSEC), 11(2), 3.

[41] Zhang, Y. (2009, October). Effective attacks in the tor authentication protocol.

In Network and System Security, 2009. NSS'09. Third International Conference

on (pp. 81-86). IEEE.

